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by Application of Perturbation Theory
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NASA Ames Research Center, Moffett Field, Calif.

A guidance scheme based on linear perturbation theory has been investigated. An im-
proved capability has been achieved by the proper choice of independent variable and by
appropriate weighting of the guidance gains computed by linear theory. The capability of
this scheme applied to the descent-to-hover phase of lunar landing is demonstrated for two
different types of nominal trajectory: a constant-thrust gravity turn maneuver, and a
constant-thrust, constant-pitch-rate maneuver. To demonstrate the performance of this
type of guidance scheme for atmosphere entry, it has been applied to the guidance of a vehicle
entering the earth’s atmosphere at parabolic velocity. Its capability is evaluated for entries
from abort conditions, as well as for entries within the normal entry corridor, and effects of
variations in life-drag ratio and atmespheric density are investigated. It is shown that for
both lunar landing and atmosphere entry this guidance system, which uses a single nominal
trajectory, and therefore requires minimum storage capacity, permits guidance to a selected
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landing site from a wide range of initial conditions. et
Nomenclature tion theory,® 7 that is, the analysis of conditions in a limited
. ) . neighborhood of a nominal trajectory. Nonlinear systems
‘é = 3“ Odym;?"u." afcslfmthn;i" units may be handled by the theory, because in the neighborhood
A l_rag Coeiicient, dimensioniess . of a known trajectory they can be described in terms of linear
o = linear th(_aory gain for the « state variable used to diff al A sth varvi Fieient H
determine the magnitude of the control variable N .erentxa. e'qu.atxons wit _varying coetlicients. owever,
7, dimensions of 7/ it is the restriction to the neighborhood of a known trajectory
g = surface gravity, ft/sec? which forms the primary limitation on the usefulness of the
h = altitude, ft theory, particularly in the case of atmospheric re-entry.
I,, = specific impulse, sec The various proposed methods employing this concept for
K4, K; = empirical dimensionless weighting factors re-entry have, in general, range capability of 6000 miles or
L/D = lift-drag ratio, dimensionless less. Theoretically, the proposal of Ref. 5 to store multiple
m = mass, Ib-sec?/ft ) nominal trajectories and associated feedback gains should
:g = earth radius plus altitude, r, +- k, ft permit guidance to any range, but the increased storage
= vehicle reference area, ft2 . . .
{ = time, sec cap_aclty required makes a §earch fo.r a simpler approach
T = thrust, Ib desirable. _The purpose of this paper is to show that by j;he
4 = total velocity, fps proper choice of independent variable and use of empirical
V. = characteristic velocity, g, In(m;/m;), fps weighting factors it is possible greatly to increase the guidance
w = earth weight, Ib capability of a linear perturbation scheme. This capability
z = downrange, ft or statute miles is achieved without increase in information storage require-
Zre = range to go, z; — z, ft or statute miles ments.
) = derivative with respect to independent variable
v = flight-path angle, deg Theory
8( ) = difference between actual and reference value of any
quantity, ( ) — (), Development of Control Equation
0 = thrust orientation, positive upward, deg i . . B .
Aa7 (dn/da) adjoint variable In this section we will derive the basic equation used in
. linear perturbation guidance. Somewhat similar develop-
Subscripts ments may be found in the literature (e.g., Ref. 7). Consider
} = g:;;llal the set of nonlinear differential equations
r = reference or nominal Zm = Fo(2nusy) 1)
Introduction where
1<n<<M

IN the field of guidance of aerospace vehicles, the concept
of guidance about a nominal or reference trajectory has
received considerable attention. It has been investigated
for use in the midcourse phase of the lunar mission, and for
vehicles re-entering the earth’s atmosphere (e.g., Refs.
1-5). The mathematical basis for this concept is perturba-
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F = M known functions

x = M state variables

u = P external force variables

v = independent variable (such as time, velocity, ete.)

/|

Expanding Eq. (1) in a Taylor series about some desired
nominal or reference trajectory and retaining terms to first
order only gives

3% — . AmadTn = I bumpduiy (2)
o 2

This is a set of M linear differential equations with varying
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Fig. 1 Lunar landing approach.

coefficients @n(v) and b,,(v), the solution of which describes
the motion about the reference trajectory, where

824(0) = zu(v) — 2, (v)

ot = (3£2) 0

buolt) = ( =) ©

The set of equations adjoint to Eq. (2) is defined by
Am + Z Gumhn = 0 (3)

Multiplying Eq. (2) by M., Eq. (3) by 2., summing over
M and integrating over the interval v to v/(v: < v < vy)
gives

;xmaxmlw = Y \nbza|, + f”/ZZbM)\mBuPdvl 4)

M M P

This is the basic equation for control about a reference condi-
tion and was called by Bliss® the fundamental formula.
Equation (4) may be particularized by identifying the single
sum at v = v, with the state variable z,, which it is desired
to control (1 < ¢ < M). Thus, identify

AmbTn),, = 02, 5
%: Ty = 0%o| < )

Then

_ 9%,

Am
vy bxm

(6)
of
To indicate the proper partial derivative, the following nota-
tion has been introduced in the literature. Equation (6)
is written

)\z,,."a(v/) = (7)

oz,
0L m

vy

Equation (7) defines the boundary conditions necessary for

the solution A.,~(¥) of Eq. (3). Equation (4) may now be
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Fig. 2 Fuel required for gravity turn and constant-pitch-
rate maneuver.
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written
8240)) = 3 Nane(0)dzn(v) + f Y S S b ham Su s (8)
M v MP

Equation (8) is the basic equation by means of which an esti-
mate can be made of the first-order change dz, of the state
variable z, from its reference value at the final condition v,
due to 1) a change éx., of any state variable z., from its refer-
ence value at a prior condition », and 2) a change du, of any
external force variable u, from its reference value during the
intervalv tov,.

For simplicity, consider u, to be control variables, and as-
sume that the number ¢ of state variables it is desired to
control is equal to the number P of control variables. Then,
given a desired final vatue dz,(v;) and given certain departures
8z (v), there is an infinity of control variable functions which
will accomplish the desired final value. In particular, there
is a constant value du, over the interval ¥ < v < v, which
will accomplish the desired final value, and, with the notation,

Tuy740) = [ T buphane dn ©)
VM
Eq. (8) may be written
82,(v) = D hen® (0)82n(®) + D L,0)0u,  (10)
M P

Solution of Eq. (10) for the control variables u, then gives

Up(v) = up(v) + % F., »(v)6xn(v) (11)

Equation (11) is applicable to a complete three-dimensional
analysis. All the guidance results obtained in this paper are
two dimensional. It can be shown that to first order, these
results are valid for three-dimensional applications.

Insofar as the theory is concerned, the particular set of
state and independent variables chosen is completely arbi-
trary. There are practical considerations for using a state
variable as independent variable rather than time, since this
reduces M in Eq. (11) by 1, thus simplifying the guidance
through reduced information storage requirements. In the
present investigation the state variables chosen were some-
what arbitrary, but total velocity instead of time was used
as independent variable because of the simplification just
noted, and because it appears that it has additional ad-
vantages as well. The most significant advantage is that
the neighborhood of the nominal trajectory appears to be
larger in terms of velocity, or, perhaps more correctly, the
excursions of the state variables on the actual trajectories
relative to those on the nominal trajectory generally are
smaller when compared on the basis of velocity. Obviously,
the advantage of using the independent variable for which
the 8z, of Eq. (11) are minimized is that less violence must
be done to the linear theory to make it operate over the range
of conditions desired.

Equation (11) defines a ferminal control system in that the
system makes no attempt to eliminate present errors, but
instead acts to prevent the propagation of present errors of
all variables into errors of the controlled variables at the
final condition » = v;. As formulated, the system defined
by Eq. (11) attempts to use minimum control excursion for
a maximum length of time. If the information possessed
by the system is correct in the sense that all pertinent vari-
ables have been accounted for, and if the system is in the
neighborhood of the nominal trajectory where linearization
of the equations is valid, Eq. (11) will command a control
increment just sufficient to achieve the desired result if the
increment is maintained to the final condition. Another
formulation which has been used is to command the maxi-
mum available control excursion for a' minimum amount of
time.? However, during the earth re-entry portion of the
present investigation, it was found that (when attempting to
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operate outside the region wherein linearization is valid)
this type of command tended to cause erroneous trajectory
excursions from which it was later impossible to recover, and
s0 was not satisfactory. The form of control finally used
was intermediate to these two extremes; the guidance gains
were adjusted through the use of empirically determined
weighting functions, as will be described subsequently. By
these two means, the use of velocity as independent variable
and empirical weighting of the guidance gains, it was possible
to extend greatly the operating range of the basic linear
theory.

Lunar Landing

The guidance scheme just described will now be applied
to the descent-to-hover phase of lunar landing. The main
features of the descent from orbit to the lunar surface are
indicated in Fig. 1. A 100-mile circular orbit was assumed,
with the gross descent accomplished by means of a Hohmann
transfer orbit whose perilune determined the initial condi-
tions for that portion of the descent considered here—a
guided letdown to an altitude of less than 1000 ft.

Two maneuvers previously considered in the literatures?
were chosen as reference trajectories, the gravity turn, and
the constant-pitch-rate maneuvers. The fuel required, in
terms of the characteristic velocity, is shown in Fig. 2 for the
two maneuvers as it is affected by initial or perilune altitude
and thrust level. Any desired value of thrust may be used
for the comstant-pitch-rate maneuver for a given initial
altitude, in contrast to the single value of thrust necessary
for the gravity turn. Both maneuvers require a large in-
crease in fuel with increase in initial altitude. As a com-
promise between fuel requirements and avoiding the moun-
tainous lunar surface, an initial altitude of 75,000 ft was
chosen. This prescribed a T/W; = 0.42 for the gravity turn.
The thrust ratio for the constant-pitch-rate maneuver was
chosen to be 0.56, the optimum value for this altitude.

The characteristics of the resultant reference trajectories
are shown in Fig. 3 in terms of the state variables chosen for
use in the control equation; altitude h, flight-path angle v,
and range z. It is desired to control the final values of two
quantities, range and altitude. The two control variables
are thrust T and thrust orientation . Then the two con-
trol equations from Eq. (11) are

T(V) = T, + F\"(V)eh(V) + F,"(V)av(V) —

F."(Mézre(V) (12)
(V) = 0.V) + Fe(V)Sh(V) +
FL(V)ov(V) + FA(V)dzre(V)

The guidance gains associated with Eq. (12) are presented
in Fig. 4. The gains associated with flight-path angle re-
main finite over the velocity range; however, all other gains
for both reference trajectories have singularities at zero
velocity. Since this investigation was performed on an

analog computer, rather severe storage limitations were
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Fig. 3 Reference trajectory state variables.
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Fig. 4 Linear theory guidance gains: a) constant pitch
rate, b) gravity turn.

necessarily imposed, a circumstance, however, which con-
forms with the original intent of developing a guidance
system with minimum information storage requirements.
The dashed lines in Fig. 4 indicate the maximum values of
the gains actually used in the investigation.

The guidance capability using the constant-pitch-rate
reference trajectory is summarized in Fig. 5 in terms of the
corridor of initial altitude and range limits from which it is
possible to guide to a target area 1000 ft in altitude and 10,000
ft in range, the center of which is located 770,000 ft down-
range, the range for this particular reference trajectory.
Changes in initial range and altitude were accompanied by the
appropriate initial velocity and flight-path angle changes
corresponding to the Hohmann trajectory passing through
that point.

Two corridors are shown, the smaller one corresponding
to the use of the guidance gains shown in Fig. 4. Maulti-
plying the gain Fi® by a factor of 2 more than doubled the
size of the corridor. Further increases in guidance capability
were found to be possible by the same means, but character-
istics such as increased fuel requirements, excessive angular
rates, and other factors made the results unsatisfactory.

Also shown in Fig. 5 are the fuel requirements for a perilune
altitude of 75,000 ft. Only a moderate fuel increase occurs
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Fig. 5 Guidance capability: constant-pitch-rate refer~
ence trajectory.



194 LESSING, TUNNELL, AND COATE

// _f

A

.

o

- 5950

ALTITUDE, h, ft

- v, h=75000ft—""

\
g
CHARAC. VELOCITY,
v,, ft/sec

0 L 1 1 1 1
-120 -100 -80 -60 -40 -20 o] 20
X
PERCENT REFERENCE RANGE’X—:—X 100
4

Fig. 6 Guidance capability: gravity turn reference tra-
jectory.

for initial range errors. The curve shown results from use
of the linear theory gains; however, the fuel requirements
due to using the adjusted gain is not significantly different.

Figure 6 shows the guidance capability obtained with the
gravity turn reference trajectory. Again, the smaller corri-
dor was obtained using the guidance gains of Fig. 4. By a
moderate adjustment of the guidance gains, namely, the use
of 1.5F,¢ and 0.85F.?, the extreme increase in the guidance
capability shown in the figure was obtained. The fuel re-
quirement is shown in the lower part of the figure for the
nominal altitude of 75,000 ft. A 1009, range error requires
a fuel increase of about 70 fps, which is equivalent to about
14 sec of hover time. As noted, the only limit actually de-
fined for this case is the downrange limit; the edges of the
cross-hatched area correspond to the range of conditions in-
vestigated. Thus, the actual amount of weighing applied
to the linear gains was somewhat arbitrary. No attempt
was made to define the other limits, because possibly there are
important constraints such as target visibility which have
not been considered in this investigation and which in an
actual application would sufficiently define the problem such
that an optimum distribution of weighing can be deter-
mined. The important result shown here is that the rather
limited capability of the basic linear guidance scheme can be
greatly extended by very simple means.

Earth Re-Entry Guidance

In the investigation of guidance for atmosphere re-entry
at parabolic speed, a vehicle with a maximum L/D = 0.4
and W/CpS = 50 was chosen. The nominal atmosphere
used was the 1959 ARDC model.

The characteristics of the nominal trajectory chosen are
shown in Fig. 7. Several factors were considered in choosing
this trajectory. One factor was the easing of the restrictions
upon the time of return from a lunar mission to a single
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Fig. 8 Linear theory guidance gains.

earth site by seeking ranges up to one-half the earth’s circum-
ference. A 6000-mile nominal range was chosen since it is
approximately in the center of the desired range envelope.
A high-skip type of trajectory was chosen because it im-
poses low total heat loads, and because the final range is less
sensitive to state variable errors than it is for trajectories
which have relatively low skip altitudes. Although not of
concern in the present investigation, these considerations are
of great practical significance in the design of the heat shield,
and the backup and monitoring system for the primary
guidance.

The nominal L/ D for this trajectory is equal to 0.1. Figure
7 shows the characteristics of the reference trajectory in terms
of the state variables chosen for use in the control equation:
altitude rate %, aerodynamic acceleration 4, and range
z. It is desired to control the single quantity, range, and by
means of the control variable L/D; then the control Eq.
(11)is

L/D(V) = (L/D), + Fi(V)sh(V) +
Fi(V)SA(V) — F.(V)dzre(V) (13)

The guidance gains associated with Eq. (13) are shown in
Fig. 8. These gains, determined by means of the linear
theory, did not define a guidance scheme capable of handling
the nonlinearities resulting from the large departures from
the reference trajectory desired, even when account was taken
of the multivalued nature of velocity evident in Figs. 7 and
8. The gains actually used in the results to be presented are
indicated by the dashed lines. Associated with these gains
are the empirically determined weighting factors shown in
Fig. 9 which enable the guidance system to operate over
virtually the full range of vehicle capability. The combina-
tion shown is not unique; other combinations also permit
full guidance capability, a fact which will allow for optimiza-
tion studies. The final form of the control equation is now

L/D(V,z)) = (L/D), + Ki(V,z)Fi(V)h(V) +
Ka(V2)Fa(V)SA(V) — Fo(V)bzra(V) (14)

This equation with the modified linear theory gains and the
weighting factors just described were used to obtain all the
results to be presented subsequently.

Figure 10 shows a typical guided trajectory for an entry

angle corresponding to one of the extremes permitted by the
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Fig. 9 Empirical weighting factors.
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Fig. 10 Typical shallow entry guided trajectory.

vehicle’s capability, the uncontrolled skip boundary. The
uncontrolled skip boundary is defined as the shallowest re-
entry angle at which the vehicle can acquire sufficient aero-
dynamic force to control the subsequent trajectory to the
shortest desired range. For the vehicle considered in this
study the boundary is 7, = —4.7°. Another boundary de-
fined by the vehicle’s capability is the maximum acceleration
boundary which is defined as the steepest re-entry angle for
which the acceleration will not exceed the maximum desired.
For the 10-g limit chosen for this study, the boundary is v, =
—7.3°.

These boundaries are shown in Fig. 11; for ranges greater
than approximately 6300 miles another vehicle capability
boundary is defined by the maximum range possible at a
given re-entry angle. Also shown in Fig. 11 are the data
points indicating guided trajectories calculated to delineate
the guidance capability. It can be seen that the guidance
system is capable of operating over virtually the entire corri-
dor defined by the vehicle itself.

An item of significant interest in the evaluation of a guid-
ance system is its ability to handle off-design conditions.
Three types of off-design conditions were considered in this
study: 1) re-entry from abort conditions, 2) variations in the
vehicle L/D, and 3) atmospheric variations. The abort
conditions considered were re-entries from circular orbit and
from a velocity of 32,000 fps. The two re-entries shown in
Fig. 12a were initiated from a eircular orbit at an altitude of
600,000 ft. The range traversed from the time of leaving
orbit altitude until an altitude of 400,000 ft was reached was
4700 miles greater for the v, = —0.41° entry than for the
¥: = —1.59° entry. Comparison of this range increment
with that possible through guidance as shown in Fig. 12a
indicates that the thrust applied in orbit to initiate re-entry
must be used as the primary range control in this type of
abort situation. The results of Fig. 12a show, however, that
the guidance system is capable of utilizing almost full vehicle
capability.

Two angles were considered in the re-entries shown in
Fig. 12b for a velocity of 32,000 fps. At this velocity the ve-
hicle has the capability, at the angle of —4.3°, of extremely
long range. As shown, however, the guidance system is
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Fig. 12 Abort conditions: a)re-entry from circular orbit,
b) re-entry at 32,000 fps.

incapable of achieving a range greater than 7500 miles for
this off-design condition. At the steeper entry angle of
—7.2° the guidance is again able to utilize almost full vehicle
capability.

The density deviation from the 1959 ARDC atmosphere
used in this study varied linearly from zero at 100,000 ft to
+509%, at 400,000 ft altitude. The L/D variations con-
sidered were either 59, greater or less than the value given
by Eq. (14). A summary of these effects on guidance
capability at various ranges is presented in Fig. 13. The solid
line is a repeat of the information given in Fig. 11, that is, the
guidance capability under nominal conditions. It can be
seen that the L/D variations affected the capability relatively
Little. At long ranges, however, the density variation caused
a considerable loss in the guidance capability. It is antici-
pated that including a component in the control equation
sensitive to density deviations (the adaptive feature of Ref.
5) will make a marked improvement. ThisJwillfbe investi-
gated in the near future.

Concluding Remarks

In this study a modified perturbation theory has been
applied to the problems of lunar landing and earth re-entry
guidance. It has been shown that if velocity is used as the
independent variable in the guidance equation and if the
linear theory gains are appropriately weighted, then one
reference trajectory can be used successfully despite large
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errors in nominal or initial conditions. The use of a single
reference traiectory in each problem means that the guidance
method requires little storage capacity.

In the lunar landing study, the guidance capability for a
control system formulated with the gravity turn as the
reference trajectory was far superior to one formulated with
a constant-pitch-rate reference trajectory. With a single
gravity turn reference trajectory, the guidance system could
compensate for initial range errors of 1009, of the reference
value with a small additional fuel increment, equivalent to a
characteristic velocity of 70 fps.

In the earth re-entry problem it was found that with a
single reference trajectory it was possible to obtain a guid-
ance capability from 1500 to 12,000 miles for a range of entry
conditions which utilized virtually all of the vehicle’s
capability.

For the abort conditions considered in this paper, the
guidance system was generally able to make almost full use
of the vehicle’s range capability.

Errors of 5%, in vehicle L/D had little effect on the capa-
bility of this guidance scheme.

Density variations from the nominal affected the long-
range guidance but had little effect on guidance capability
for ranges less than 6000 miles.
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